Axo-axonic synapses formed by somatostatin-expressing GABAergic neurons in rat and monkey visual cortex.
نویسندگان
چکیده
In cerebral cortex of rat and monkey, the neuropeptide somatostatin (SOM) marks a population of nonpyramidal cells (McDonald et al. [1982] J. Neurocytol. 11:809-824; Hendry et al. [1984] J. Neurosci. 4:2497:2517; Laemle and Feldman [1985] J. Comp. Neurol. 233:452-462; Meineke and Peters [1986] J. Neurocytol. 15:121-136; DeLima and Morrison [1989] J. Comp. Neurol. 283:212-227) that represent a distinct type of gamma-aminobutyric acid (GABA) -ergic neuron (Gonchar and Burkhalter [1997] Cereb. Cortex 7:347-358; Kawaguchi and Kubota [1997] Cereb. Cortex 7:476-486) whose synaptic connections are incompletely understood. The organization of inhibitory inputs to the axon initial segment are of particular interest because of their role in the suppression of action potentials (Miles et al. [1996] Neuron 16:815:823). Synapses on axon initial segments are morphologically heterogeneous (Peters and Harriman [1990] J. Neurocytol. 19:154-174), and some terminals lack parvalbumin (PV) and contain calbindin (Del Rio and DeFelipe [1997] J. Comp. Neurol. 342:389-408), that is also expressed by many SOM-immunoreactive neurons (Kubota et al. [1994] Brain Res. 649:159-173; Gonchar and Burkhalter [1997] Cereb. Cortex 7:347-358). We studied the innervation of pyramidal neurons by SOM neurons in rat and monkey visual cortex and examined putative contacts by confocal microscopy and determined synaptic connections in the electron microscope. Through the confocal microscope, SOM-positive boutons were observed to form close appositions with somata, dendrites, and spines of intracortically projecting pyramidal neurons of rat area 17 and pyramidal cells in monkey striate cortex. In addition, in rat and monkey, SOM boutons were found to be associated with axon initial segments of pyramidal neurons. SOM axon terminals that were apposed to axon initial segments of pyramidal neurons lacked PV, which was shown previously to label axo-axonic terminals provided by chandelier cells (DeFelipe et al. [1989] Proc. Natl. Acad. Sci. USA 86:2093-2097; Gonchar and Burkhalter [1999a] J. Comp. Neurol. 406:346:360). Electron microscopic examination directly demonstrated that SOM axon terminals form symmetric synapses with the initial segments of pyramidal cells in supragranular layers of rat and monkey primary visual cortex. These SOM synapses differed ultrastructurally from the more numerous unlabeled symmetric synapses found on initial segments. Postembedding immunostaining revealed that all SOM axon terminals contained GABA. Unlike PV-expressing chandelier cell axons that innervate exclusively initial segments of pyramidal cell axons, SOM-immunoreactive neurons innervate somata, dendrites, spines, and initial segments, that are just one of their targets. Thus, SOM neurons may influence synaptic excitation of pyramidal neurons at the level of synaptic inputs to dendrites as well as at the initiation site of action potential output.
منابع مشابه
The axo-axonic interneuron in the cerebral cortex of the rat, cat and monkey.
The synaptic connections of a specific type of identified cortical interneuron, the axo-axonic cell, were studied using Golgi methods. In the light-microscope axo-axonic cells were demonstrated in certain layers of the primary and secondary visual cortex of rat, cat and monkey, in the motor cortex of cat and in the subiculum and pyriform cortex of rat. The dendrites originating from the oval so...
متن کاملTemporal dynamics of parvalbumin-expressing axo-axonic and basket cells in the rat medial prefrontal cortex in vivo.
Axo-axonic interneurons, innervating exclusively axon initial segments, and parvalbumin-expressing basket interneurons, targeting somata, dendrites, and spines of pyramidal cells, have been proposed to control neuronal activity in prefrontal circuits. We recorded the spike-timing of identified neurons in the prelimbic cortex of anesthetized rats, and show that axo-axonic cells increase their fi...
متن کامل(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملExcitatory effect of GABAergic axo-axonic cells in cortical microcircuits.
Axons in the cerebral cortex receive synaptic input at the axon initial segment almost exclusively from gamma-aminobutyric acid-releasing (GABAergic) axo-axonic cells (AACs). The axon has the lowest threshold for action potential generation in neurons; thus, AACs are considered to be strategically placed inhibitory neurons controlling neuronal output. However, we found that AACs can depolarize ...
متن کاملLighting the chandelier: new vistas for axo-axonic cells.
Chandelier or axo-axonic cells are the most selective of all cortical GABAergic interneurons, because they exclusively contact axon initial segments of cortical glutamatergic neurons. Owing to their privileged location on initial segments, axo-axonic cells have often been assumed to have the ultimate control of pyramidal cell output. Recently, key molecules expressed at the initial-segment syna...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of comparative neurology
دوره 443 1 شماره
صفحات -
تاریخ انتشار 2002